

22 Aralık 2023 Cuma 09:22

$\rightarrow (u_1) f_1 u_2 f_3 u_3 f_4 u_2 f_3 u_3 f_5 u_4 f_6 u_4 f_7 u_2 f_3 u_3 f_5 u_4.$

Definition

Let G be a graph, and let v and w be vertices in G.

A walk from v to w is a finite alternating sequence of adjacent vertices and edges of G. Thus a walk has the form

$$v_0e_1v_1e_2\cdots v_{n-1}e_nv_n,$$

where the v's represent vertices, the e's represent edges, $v_0 = v$, $v_n = w$, and for all i = 1, 2, ..., n, v_{i-1} and v_i are the endpoints of e_i . The **trivial walk from** v to v donsists of the single vertex v.

A trail from v to w is a walk from v to w that does not contain a repeated edge.

A path from v to w is a trail that does not contain a repeated vertex.

A closed walk is a walk that starts and ends at the same vertex.

A circuit is a closed walk that contains at least one edge and does not contain a repeated edge.

A simple circuit is a circuit that does not have any other repeated vertex except the first and last.

ext VI Closed walks closed walks not a critical to a closed walk s.v=e.v

Trail: repeated edges X

path: repeated x repeated x

circuits: s.v=e.v.

VA

walks

	Repeated Edge?	Repeated Ve <u>rtex</u> ?	Starts and Ends at Same Point?	Mus Contain at Least One Edge?	remem
Walk	allowed	allowed	allowed	no	trivial
Trail	no	allowed	allowed	no	
Path	no	no	Topatato	no	
Closed walk	allowed	allowed	yes 🗸	no	
> Circuit	no	allowed	yes	yes	
Simple circuit	по	first and last only	yes	yes	

Connectedness

Two vertices v and w of G are connected if, and only if, there is a walk from v to w.

The graph G is connected if, and only if, any two vertices in G are connected.

Connected Component

H is a subgraph of G H is a connected graph There is no connected subgraph of G which contains H.

