MAT 203E DISCRETE MATHEMATICS

Instructor: Dr. Sümeyra BEDİR

LOGICAL FORMS and LOGICAL EQUIVALENCE

(Logical) Statements (/Propositions):

A logical statement (or proposition) is a sentence that is true OR false, but not both. (T, F)

No questions, no exclamations, enough clarity.

STATEMENTS AND LOGICAL FORMS

• A simple statement has 2 possible truth values.

 \circ Negation of a statement $p: \sim p$

Truth Table

Compound Statements

 Includes simple statement variables (p,q,r) connected with logical operations (connectives).

 \sim , \land , \lor , \bigcup

! Number of possible truth values for a compound statement:

 $2^{\#}$ of simple statement variables

! Each simple statement in a compound statement should be complete.

! Ali is tall and thin.! Ali is tall and Ali is thin.

Compound Statements

• Truth table for «exclusive or»

р	q	$p \lor q$	$p \wedge q$	$\sim (p \land q)$	$(p \lor q) \land \sim (p \land q)$
Т	Т	Т	Т	F	F
Т	F	Т	F	Т	Т
F	Т	Т	F	Т	Т
F	F	F	F	Т	F

 \circ Construct a truth table for $(p \land q) \lor r$

De Morgan's Rule

$$\sim (p \land q) \equiv \sim p \lor \sim q.$$

$$\sim (p \lor q) \equiv \sim p \land \sim q.$$

Logical Equivalence

Two statement forms are called **logically equivalent** if, and only if they have identical truth values for each possible substitution of statements for their statement variables(*).

р	q	$p \wedge q$	$q \wedge p$
Т	Т	Т	Т
Т	F	F	F
F	Т	F	F
F	F	F	F
		<u>†</u>	† I

 $p \equiv \sim (\sim p)$

 $p \land q \equiv q \land p$

р	q	~p	$\sim q$	$p \land q$	$\sim (p \land q)$		$\sim p \land \sim q$
Т	Т	F	F	Т	F		F
Т	F	F	Т	F	Т	¥	F
F	Т	Т	F	F	Т	¥	F
F	F	Т	Т	F	Т		Т
					1		<u>†</u>

 $\sim (p \land q) \not\equiv \sim p \land \sim q$

Tautologies and Contradictions

- A tautology is a statement form that is always true regardless of the truth values of the individual statements substituted for its statement variables.
- a tautological statement -> t
- A contradication is a statement form that is always false regardless of the truth values of the individual statements substituted for its statement variables.
- a contradictory statement -> c

Tautologies and Contradictions

Some Important Logical Equivalences

$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \vee q) \vee r \equiv p \vee (q \vee r)$
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
$\sim (\sim p) \equiv p$	
$p \wedge p \equiv p$	$p \lor p \equiv p$
$p \lor \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) \equiv p$
$\sim t \equiv c$	$\sim c \equiv t$

STATEMENTS AND LOGICAL FORMS

Conditional Statements

• Given p and q as statement variables, the conditional denoted by $p \Rightarrow q$ is read as "**If p then q**" or "**p implies q**".

A conditional statement that is true by virtue of the fact that its hypothesis is false is often called *vacuously true* or *true by default*.

Conditional Statements

Negation, contra-positive, inverse and converse of a conditional statement

A conditional statement is logically equivalent to its contra-positive. Converse and inverse of a conditional statement are logically equivalent.

Bi-conditional Statements (if and only if)

 $p \Leftrightarrow q$

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

р	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$	$(p \to q) \land (q \to p)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т
				1	1

Bi-conditional Statements (if and only if)

Order of Operations for Logical Operators

- 1. Negations and parantheses
- 2. A, V
- 3. ⇒, ⇔

STATEMENTS AND LOGICAL FORMS

