

MAT 203E DISCRETE MATHEMATICS

Instructor: Dr. Sümeyra BEDİR

Valid/Invalid Arguments

 $p \to q$ $q \to r$ $\therefore p \to r$

A sequence of statements:

all statements in an argument except for the final one, are called **premises** (or assumptions or hypotheses). The final statement is called the **conclusion.** The symbol :, which is read "therefore," is normally placed just before the conclusion.

Valid / Invalid Arguments

- ! <u>To say that an argument form is **valid** means that:</u> if the resulting premises are all true, then the conclusion is also true.
- <u>"Otherwise the argument form is said to be invalid.</u>

Arguments.. checking validity

- 1. Create the truth table
- 2. Identify the columns of **premises** and **conclusion**.
- 3. Specify the «**critical rows**». (Rows where <u>all</u> the premises are True)
- 4. Look at the truth value of the conclusion at critical rows:

• If all T : Argument is valid.

• If there is at least one F: Argument is **invalid.**

Example

- Determine whether the following argument forms are valid or invalid
- by drawing a truth table, indicating which columns represent the premises and which represent the conclusion,
- and annotating the table with a sentence of explanation.

$$p \rightarrow q \qquad p \\ q \rightarrow p \qquad p \rightarrow q \\ \therefore p \lor q \qquad \sim q \lor r \\ \therefore r$$

Modus Ponens	$p \rightarrow q$		Elimination	a. $p \lor q$	b. $p \lor q$
	р			$\sim q$	$\sim p$
	∴. q			:. p	$\therefore q$
Modus Tollens	$p \rightarrow q$		Transitivity	$p \rightarrow q$	
	$\sim q$			$q \rightarrow r$	
	$\therefore \sim p$			$\therefore p \rightarrow r$	
Generalization	a. p	b. q	Proof by	$p \lor q$	
	$\therefore p \lor q$	$\therefore p \lor q$	Division into Cases	$p \rightarrow r$	
Specialization	a. $p \wedge q$	b. $p \wedge q$		$q \rightarrow r$	
	.:. <i>р</i>	$\therefore q$		r	
Conjunction	р		Contradiction Rule	$\sim p \rightarrow c$	
	q			.:. <i>р</i>	
	$\therefore p \land q$				

Table 2.3.1 Valid Argument Forms

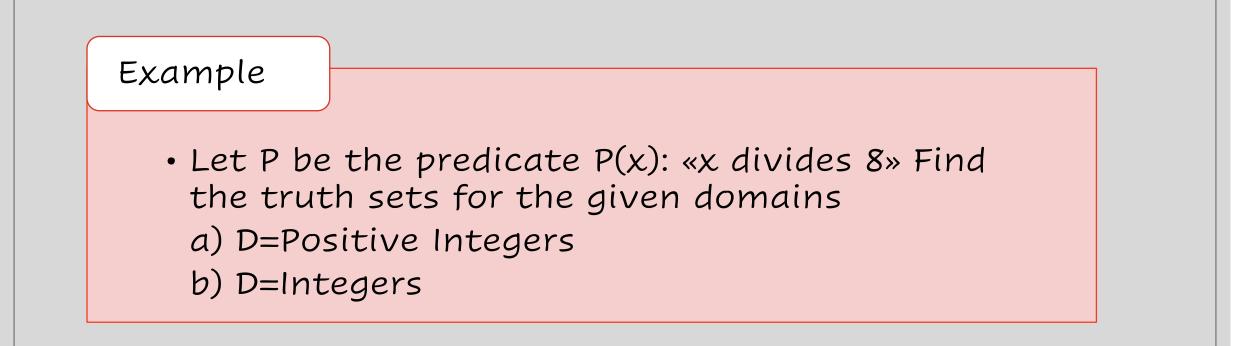
#3 Predicates and Quantified Statements

• A **predicate** defines property of one or more variables.

P(x) : x is cute. P: Being cute...

Domain(D):

Truth Set: $\{x \in D: P(x)\}$



Universal Quantifier (∀)

- Let Q(x) be a predicate and D the domain of x. A universal statement is a statement of the form " $\forall x \in D$, Q(x)."
- \circ It is defined to be true if, and only if, Q(x) is true for every x in D.
- \circ It is defined to be false if, and only if, Q(x) is false for at least one x in D.
- \circ A value for x for which Q(x) is false is called a **counterexample** to the universal statement.

P(x): x is a dog. Q(x): x is cute. D: Zoo ($\forall x \in D$)[P(x) ⇒ Q(x)]

- $D = \{1, 2, 3, 4, 5\}, (\forall x \in D, x^2 \ge x)$. Prove.
- $(\forall x \in \mathbb{R}, x^2 \ge x)$. Disprove.

Existential Quantifier (3)

- Let Q(x) be a predicate and D the domain of x. An existential statement is a statement of the form " $\exists x \in D$ such that Q(x)."
- \circ It is defined to be true if, and only if, Q(x) is true for at least one x in D.
- It is false if, and only if, Q(x) is false for all x in D.

Examples

- $(\exists x \in \mathbb{Z}^+ : x^2 = x)$. Prove.
- $E = \{5,6,7,8\}, (\exists x \in E : x^2 = x).$ Disprove.

Contra-positive, inverse and converse of a quantified conditional statement

Universal Conditional Statement $(\forall x \in D, P(x) \Rightarrow Q(x))$

Contra-positive:	$(\forall x \in D, \sim Q(x) \Rightarrow \sim P(x))$
Inverse:	$(\forall x \in D, \sim P(x) \Rightarrow \sim Q(x))$
Converse:	$(\forall x \in D, Q(x) \Rightarrow P(x))$

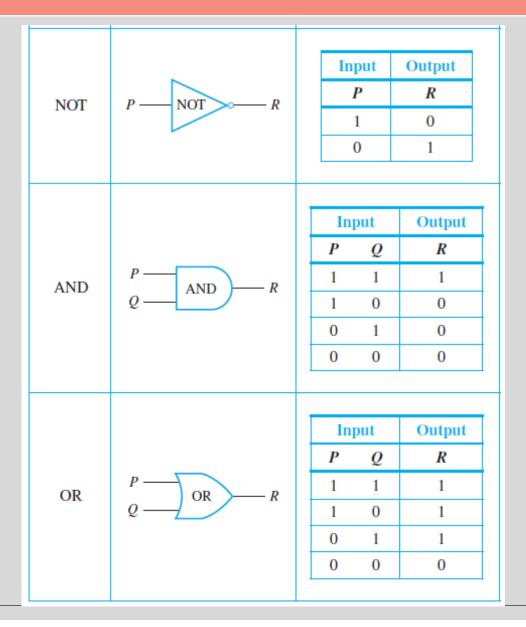
Negations of Quantified Statements				
Quantified Statement	Its Negation			
Universal Statement $(\forall x \in D, P(x))$	$(\exists x \in D, \sim P(x))$			
Universal Conditional Statement $(\forall x \in D, P(x) \Rightarrow Q(x))$	$(\exists x \in D, P(x) \land \sim Q(x))$			
Existential Statement $(\exists x \in D, P(x))$	$(\forall x \in D, \sim P(x))$			
Existential Conditional Statement $(\exists x \in D, P(x) \Rightarrow Q(x))$	$(\forall x \in D, P(x) \land \sim Q(x))$			

2.4 Application: Digital Logic Circuits

! «Boolean Variable»

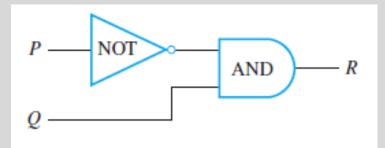
! «Boolean Expressions»

Digital Logic Circuits..Gates

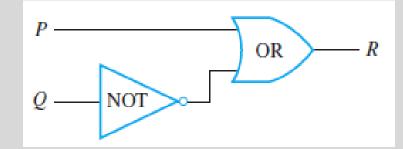


The Boolean Expression Corresponding to a Circuit

! Combine from left to right..



Constructing the Input/Output Table for a Circuit

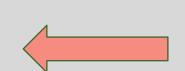


Input		Output
Р	Q	R
1	1	1
1	0	1
0	1	0
0	0	1

The Boolean Expression Corresponding to a Circuit

- 1. Identify the rows where the Output is 1.
- 2. For each such row, construct an AND expression that produces a 1 for the exact combination of input values.
- 3. Use an OR connective at the end.

 $(P \land Q \land R) \lor (P \land \sim Q \land R) \lor (P \land \sim Q \land \sim R)$



	Input		Output
Р	Q	R	S
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

Finding a Circuit That Corresponds to a Given Boolean Expression

! From outer to the inner; from right to left

 $(P \land Q \land R) \lor (P \land \sim Q \land R) \lor (P \land \sim Q \land \sim R)$

