

MAT 203E DISCRETE MATH

Instructor: Sümeyra BEDİR, PhD.

#5.2 Proof by Mathematical Induction

! In this section, Mathematical Induction, as a proof technique, will be covered on some examples of number theoretical concepts and sequences.

#5.1 Sequences (recap)

Infinite Sequences of Real Numbers

- <u>General Term</u>: Given as a_k , stated with an initial value for k.
- a_k : Gives a formula for how the k^{th} term of the sequence is obtained from the value of k.
- The range of values of terms of an infinite sequence may be a finite set.
- A sequence may have different expressions for its general term.

Sums and Products

$$\int_{k=m}^{n} a_{k} = a_{m} + a_{m+1} + a_{m+2} + \dots + a_{n}.$$

$$\int_{k=m}^{n} a_{k} = a_{m} \cdot a_{m+1} \cdot a_{m+2} \cdots a_{n}.$$
Factorials

$$n! = n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1.$$

$$0 \le r \le n.$$

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

Principal of Mathematical Induction

Example (n coin problem)

• $\forall n \geq 8$, n cents can be obtained using 3c and 5c coins.

8¢	3¢ + 5¢
9¢	$3\varphi + 3\varphi + 3\varphi$
10¢	$5 \mathbf{e} + 5 \mathbf{e}$
11¢	$3\varphi + 3\varphi + 5\varphi$
12¢	$3\mathbf{e} + 3\mathbf{e} + 3\mathbf{e} + 3\mathbf{e}$
13¢	$3\phi + 5\phi + 5\phi$
14¢	$3\mathbf{e} + 3\mathbf{e} + 3\mathbf{e} + 5\mathbf{e}$
15¢	$5\phi + 5\phi + 5\phi$
16¢	$3\mathbf{e} + 3\mathbf{e} + 5\mathbf{e} + 5\mathbf{e}$
17¢	$3 \mathbf{r} + 3 \mathbf{r} + 3 \mathbf{r} + 3 \mathbf{r} + 5 \mathbf{r}$

Principal of Mathematical Induction

 $(k+1)\phi$

5¢

5¢

Method of Proof by Mathematical Induction

Consider a statement of the form, "For all integers $n \ge a$, a property P(n) is true." To prove such a statement, perform the following two steps: Step 1 (basis step): Show that P(a) is true.

Step 2 (inductive step): Show that for all integers $k \ge a$, if P(k) is true then P(k + 1) is true. To perform this step,

suppose that P(k) is true, where k is any particular but arbitrarily chosen integer with $k \ge a$. [*This supposition is called the* inductive hypothesis.]

Then

show that P(k + 1) is true.

Proof by Mathematical Induction

- 1. Equalities (involving Sums/Product)
- 2. Inequalities
- 3. Divisibility
- 4. Sequences (General Terms, recursive sequences)

• Prove for all integers $n \ge 1$,

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

• Prove for all integer $n \ge 0$,

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}$$

• Prove for all integers $n \ge 3$

$2n + 1 < 2^n$

• Prove for all integers $n \ge 5$,

 $n^2 < 2^n$

• Prove for all integers $n \ge 2$,

